Asymptotic phase, asymptotic modulus, and Titchmarsh-Weyl coefficient for a Dirac system
نویسندگان
چکیده
منابع مشابه
Weyl-Titchmarsh theory for symplectic difference systems
In this work, we establish Weyl–Titchmarsh theory for symplectic difference systems. This paper extends classical Weyl–Titchmarsh theory and provides a foundation for studying spectral theory of symplectic difference systems. 2010 Elsevier Inc. All rights reserved.
متن کاملWeyl-Titchmarsh Theory for Hamiltonian Dynamic Systems
and Applied Analysis 3 and spectral theory for the system 1.2 . Shi studied Weyl-Titchmarsh theory and spectral theory for the system 1.2 in 33, 34 ; Clark and Gesztesy established the Weyl-Titchmarsh theory for a class of discrete Hamiltonian systems that include system 1.2 23 . Sun et al. established the GKN-theory for the system 1.2 35 . 1.3. Dynamic Equations A time scale T is an arbitrary ...
متن کاملAsymptotic phase for stochastic oscillators.
Oscillations and noise are ubiquitous in physical and biological systems. When oscillations arise from a deterministic limit cycle, entrainment and synchronization may be analyzed in terms of the asymptotic phase function. In the presence of noise, the asymptotic phase is no longer well defined. We introduce a new definition of asymptotic phase in terms of the slowest decaying modes of the Kolm...
متن کاملOn Periodic Matrix-Valued Weyl-Titchmarsh Functions
We consider a certain class of Herglotz-Nevanlinna matrix-valued functions which can be realized as the Weyl-Titchmarsh matrix-valued function of some symmetric operator and its self-adjoint extension. New properties of Weyl -Titchmarsh matrixvalued functions as well as a new version of the functional model in such realizations are presented. In the case of periodic Herglotz-Nevanlinna matrix-v...
متن کاملasymptotic property of order statistics and sample quntile
چکیده: فرض کنید که تابعی از اپسیلون یک مجموع نامتناهی از احتمالات موزون مربوط به مجموع های جزئی براساس یک دنباله از متغیرهای تصادفی مستقل و همتوزیع باشد، و همچنین فرض کنید توابعی مانند g و h وجود دارند که هرگاه امید ریاضی توان دوم x متناهی و امیدریاضی x صفر باشد، در این صورت می توان حد حاصلضرب این توابع را بصورت تابعی از امید ریاضی توان دوم x نوشت. حالت عکس نیز برقرار است. همچنین ما با استفاده...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1989
ISSN: 0022-247X
DOI: 10.1016/0022-247x(89)90169-8